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SINGLE-LOOK DETECTION WITH UNKNOWN SIGNAL STRENGTHS

INTRODUCTION

Detection problems involving unknown parameters can lead to large error probabilities. An
example problem illustrating this has two signals of unknown strength added to Gaussian noise. Let
hypothesis Hn (n = 0,1,2) designate that exactly n signals are present. Mathematically, the problem
with equal a priori probabilities is stated as:

P(H0 ) = P(H) = P(H2 ) = 1/3

Hi0: rI= n=

rev- n2

HI: r, == s + n1

r2 -n2

or

rl= n1

r2 - S2 + n2

H2: r, = Si + ni

r2= 52 + f 2,

where r, and r2 are received signals, n1 and n2 are noises, and sj and 52 are signals of unknown
strengths. After receiving one sample each of r1 and r2, the decision problem is to determine how
many signals are present.

The classical method estimates the signal strengths from the received voltages under each
hypothesis, places these signal strengths back into the corresponding pdf (probability density function),
and chooses the number of signals present that gives the minimum error probability. This method
gives a 2/3 error probabality for any combination of signal strengths. The poor performance is due to
having only a single observation and equal a priori probabilities.

A detector based on knowing the signal values provides an upper limit on performance and is the
standard to which other methods are compared. The comparison of detector performance is based on
the total probability of error. The spread between the classical and the known signal performance
suggests that there should be some decision procedures having error probabilities lying between them.
The "known signal" rule can be applied, even when the actual signal strengths are unknown, where a
'guess' is made for the strengths. This rule and the one assuming that the signals are uniformly
distributed between two limits are applied to this problem. Neyman-Pearson type tests are also
developed and applied to this problem. The Neyman-Pearson tests are generalized and applied to
correlated noise.

PROBABILITY DENSITY FUNCTIONS

Gaussian noises n1 and n2 of zero mean and equal variance are added to the signals s, and S2.
For most of the work, n1 and n2 are independent. With the received signals normalized to the

Manuscript approved September 9, 1986.
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noisestandard deviation, the pdfs for Ho, Hi, and H2 are given below. Hk is the hypotheses that
exactly n signals are present. All parameters of the noise are assumed to be known. The Gaussian
noise density is

n Z2 + n 2

Pi- (n 1, n 2)-7 e 7
z~r

and the probability densities for the received signals under each hypothesis are

'twH (rir2) = p(rl, r2)
r2 * r2

r= 4 i2

Am (rIr2) = P(S• 0X S 2= 0) N (rs - SI, 4) + P(s1 = 0,S2 X •) p1 r1,r 2 - SI)

1= 2e.(rl - Slur + 2 PL,!rI,r2 - 2)
+ mrIr(r1-s132 + r2 r2+(r2- s2)2

and

P,_1.(L r2) = =p,(r- 1 , Y2 -s2)

(rl-slt)2 (r2 - sz)l
=- e ~~~~2

2ir 
Thi- -nrnbnhUl~t dpn-rkci Criminrtrn n-S ininth liv(miinisnn rnrTP~ntprd nrniv-t~'~ S-m vnrnnn1 uir nrindi rrwr~l tirnn

.he rwbabili., d-si.,, functon of Jointly mnelated
coefficient p is given by

(N2_-2P n7 1n2 +n 2 )

,N>nltn2)- 2 (9 1 2)tgZ e 2I-p2)

The probability density of the received signals under each hypothesis is modified accordingly.

MINIMUM PROBABILITY OF ERROR

The decision of whether Ho, HI, or H2 has occurred is made after looking at the received signals
r1 and r2 and using the known a priori probabilities. The minimum probability of error occurs when
the probability of being correct is a maximum. The decision rule is

max P (Hi observe ?) - choose H(

or equivalently,

max PFf11) p 1H i(r1,r2) - choose Jf.
Hvi

If Pf4) PThH (rar2) is compared with P(M)Iuff (rt,r2), then the hypothesis having the smallest value

can never be the one giving the maximum value (at least, it would be rejected in favor of the
hypothesis having the larger value in this test). Thus, the result of conducting the maximization opera-
tion is equivalent to choosing the hypothesis that satisfies a set of binary tests (expressed in the nega-
tive of each hypothesis) Ui, pp. 48-50J. For the case of three hypotheses, this set of tests is:

Ho and HI: P(H0)p 11ff(7) C P]H1) p,7,7) not HA, else not Hi,

HO and Hz: P(H)P1H,(r) < PUH) -# not H0, else not H2, and

H, and H2: P(HI1pL,1H C P(H2 ) PAw r) - not H1, else not H2 .

2
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The hypothesis minimizing the error probability is that which holds true for each of these tests. These
tests are applied by the following logic:

If test [Ho and HI) is true, then
If test (Hi and H2J is true, then

choose hypothesis H 2

else
choose hypothesis HI

enult
else

If test (Ho and H2) is true, then
choose hypothesis 12

else
choose hypothesis H0 .

endif
endif.

Ct l LCCCL- 1% L TTAFlf

The classical method estimates the unknown parameters in each of the pdfs and then applies the
minimum probability of error test. We shall use the maximum a posteriori (MAP) estimate

max p(714;i) - 7 for H, n = 0,1, 2.
s

For each hypothesis In, the unknown parameters are estimated. In this case, the unknown parameters
are the signal levels s, and 52, and the relevant pdfs are

HAc p(rjr21H 0) = ie 11t11 +'2)
27r

H - per r lS ) I [ I -112j(rj-sj?2+ r 21 + I -1/2[r,2 + (12-12)2|HI: p(r),r21H,) = -! 4 {e/Fl52 1 -/1r i (re

and

H2: p~rlsr~lH2) =12 -tt(rl-sl)2 + (r2-52)i112: p(rj,r 2 112) = 2n. -e

The estimates for s, and s2 that maximize these pdfs are:

Ho: (no parameters needed) ,

HIIs: = rl and S2 = r;,
and

f: s= 4r and s 2 = r; ,

where r4 and r4 are the received values of rF and r2, respectively. The minimum probability of error
decision rule is to choose the hypothesis

1 1 -1/2[(rt)2 + (r,)21
Hi 3 2 e ' 

I I - 112 /2(r;)2 e- i/2r2 52

HI 3 27r 2

and

H2 : 
3 2Zr

with the largest value. By inspection, Hf7 always has a larger probability density function. hence H1 is
always chosen as the final decision. Since H2 occurs only one out of three opportunities, the error
probability is 2/3.

3
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KNOWN-SIGNAL DETECTOR

To place an upper bound on the performance that any method could yield, the minimum probabil-
ity of error detector was designed where the signal strengths were used in the design. The performance
for any other procedure never exceeds the performance obtained when there is perfect knowledge of
the signal strengths; i.e., the values of sj and 82 are known.

For equally likely a priori probabilities, P (HO) = P(HI) = P (H2) = 1/3,

By letting RI = - and R2 = e52'2- J/2s2 ) the tests may then be expressed as

R1 + R2
Hi and tH 1 < -not H0 , else not HI,

Ho and HI: 1 C RjRj not Hl, else not Hz, and

HI and H2: RI +R2 < .RR 2 - not H1 , else not H2.
2

Note that RI and R2 are the likelihood ratios of (Ho and HI) and (Ho and H2). respectively. These
tests can be shown graphically on a RI and R2 plot where each (RA2 R2) pair lies in a decision region
(labeled for Ho, HI, or H2). The boundaries between the decision regions are obtained by replacing the
inequalities by equalities. All decision boundaries are shown in Ftg. i where parts (a), (b, and tc)

show the boundary of each test individually, and (d) shows all boundaries. Note that the HO, H2 boun-
dary is never used. Figure 2 shows all regions -and boundaries needed to make a decision.

Table 1 shows the total error Drobability for known signals lying between -16 dB and +16 dB.
Figure 3 shows a plot taken along the main diagonal. The small signal asymptote is the error probabil-
ity that is obtained when nothing is known about the signal; for equally likely a priori probabilities, the

small signal asymptote error probability is 213. The error probability drops to 0.02 when the signal is 16
dB and approaches zero for large signals.

MINIMAX CRITERION

The decision rules considered contain parameters that are at our disposal. To select design param-
eters 4. a minimax test is conducted. The minimax design selects the design parameters d by perform-
ing

min max Q c .
dE~D ;cwaEA

The selected design is that d which yields this minimax value for Q where Q is a performance mea-

sure, sadJcr is the actual signal value, A is the set of allowed signal vectors, 4 is the design parameters
at our disposal, and D is the set of allowed design vectors.

For this work, the performance Q is the difference between the probablitYy ofL ULII Usingr tLhU sUb-

ject design and the probability of error using the true signal. For this performance measure, Q is iden-
tified by the more descriptive notation AP (C.

. X f erro design based oni _ I design based on)
'K 1e r.rI assumed signals) - I ol I actual signals

4
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H. means not H.

n 0,1, 2

2
R, R, 2

O o~~~~~~~~~~~~~~~q

H0

0 2 4 0

R, Rx

02 2 0,

(c) H1 vs H2 (d) all boundaries

Fig. I -Known-signal' decision boundaries
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Fig. 2 - Knowrn-signal/>decision regions
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Table 1 - P(e) for "known signal"
SI (dB)

-16 -14 -12 -10 -8 -6 4 -2 0 2 4 6 8 10 12 14 16

0.6367 0.6305 0,6222
0.6300 0.6297 0.6213
0.6220 0.6167 0.6195
0.6150 0.6088 0.6045
0,6037 0.5993 0.5942
0.5935 0.5852 0.5820
0.5753 0.5712 0.5708
0.5553 0.5557 0.5510
0.5327 0.5277 0.5240
0.5048 0.5045 0.5030
0.4708 0.4693 0.4690
0.4378 0.4360 0.4372
0.3987 0.3985 0.3978
0.3703 0.3700 0.3707
0.3498 0.3502 0.3505
0.3393 0.3393 0.3397
0.3343 0.3343 0.334X

0.6162
0.6103
0.6078
0.6043
0.5880
0.5773
0.5617
0.5423
0.5213
0.5028
0.4658
0.4382
0.3967
0.3688
0.3490
0.3368
0.3320

0.6017
0.6070
0.5970
0.5948
0.5822
0.5752
0.5517
0.5350
0,5195
0,4915
0.4572
0.4302
0.3945
0.3630
0.3448
0.3350
0.3310

0.5933
0.5897
0.5862
0. 57 82
0.5688
0.5633
0.5477
0.5282
0.5100
0.4858
0.4570
0.4283
0.3895
0. 3605
0.3417
0.3323
0.3283

0.5753
0,5747
0.5720
0.5658
0.5555
0.5457
0.5363
0.5190
0.4962
0.4712
0.4425
0.4185
0.3778
0.3507
0.3310
0.3238
0.3200

0.5573 0.5290 0.5012 0.4658
0.5572 0.5283 0.5017 0.4673
0.5510 0.5253 0.4975 0.4665
0.5442 0.5268 0.4997 0.4663
0.5358 0.5208 0.4927 0.4653
0.5328 0.5102 0.4790 0.4510
0.5167 0.4910 0.4663 0.4380
0.4930 0.4728 0.4488 0.4212
0.4745 0.4532 0.4293 0.3983
0.4532 0.4280 0.4017 0.3738
0.4257 0.3993 0.3718 0.3383
0.3973 0.3665 0.3345 0.3000
0.3647 0.3335 0.3012 0.2668
0.3340 0.3050 0.2745 0.2325
0.3128 0.2820 0.2507 0.2083
0.3018 0.2708 0.2393 0. 1970
0.2982 0.2665 0.2345 0.1923

0.4302
0.4305
0.4285
0.4268
0.4250
0.4202
0.4067
0.3930
0.3675
0.3343
0.2975
0.2547
0.2180
0.1853
0.1572
0.1443
0. 1397

0.3993 0.3700
0.3998 0.3712
0.4000 0.3688
0.3980 0.3687
0.3982 0.3658
0.3892 0.3582
0.3742 0.3478
0.3567 0.3292
0,3313 0.3055
0.2988 0.2675
0.2600 0.2272
0.2160 0.1787
0.1752 0.1380
0.1395 0.0992
0.1128 0.0718
0.0990 0.0577
0.0932 0.0518

--.

-16
-14
-12
10
-8
-6
4
-2
0
2
4
6
8

10
12
14
16

0.3498
0.3500
0.3498
0.3508
0.3485
0.3398
0.3252
0.3087
0.2835
0.2465
0.2053
0.1575
0.1147
0.0743
0.0455
0.0302
0.2835

0.3387
0.3388
0.3385
0.3392
0.3378
0.3313
0.3168
0.2988
0.2720
0.2365
0.1933
0.1462
0. 1015
0.0588
0.0300
0.0150
0.0083

0.3347
0.3350
0.3347
0.3360
0.3347
0.3267
0.3 128
0.2958
0.2693
0.2338
0. f903
0.1423
0.0973
0.0540
0.0252
0.0100
0.0030
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Za'
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SIGNAL LEVEL 5 =- S,? Wda

Fig. 3- Error probability for 'klnown-signal"
design (reference)

ASSUMED KNOWN-SIGNAL DECISION RULE

- e - - … . . _ e. _ _t'_.i t__ _'__ _ _£_ri , __f Perfect Knowledge of Sj and S2 comoinc wlLl the m[inimuni proUabiliy Ut etuLU ULILVJ lUtt I4UN LU

the rules for the "known-signal' detector. By assuming values for s, and S2, we obtain the "assumed
known-signal" decision rules. The signal parameters in RI and B2 are the design parameters at our
disposal. To help pick these values, two criterions are used: minimax and mit-average. The min-
average lead to the same general results as the minimax and are not reported here.

The problem is solved by considering the following statements: (1) the best design requires
=2 Sid; (2) the location of the actual signals yielding the worst performance is at either 52 SI or

5 2max and 5 l mi. (or S[ mjt and s2 tx); and (3) the best design occurs at the intersection of the limiting
~nn ... I....- C...n .C .1-1--4--- .n.-4L-. -.Zt- . - an-d liarnorarao ttvdlues oU LWo J4IMI~es t 1 cU1 tVeU as3siUatedU WLt UILIU ,2 = 3] Ut 3max and h smin We cotsideO eac ' tate=

ment independently and then together.

Table 2 contains the worst (maximum) AP(E) for the design signals sac and S2d ranging from
-16 dB to + 16 dB (each entry is the "max" part of "minimax2). Thus) each entry in Table 2 is the
result of maximizing 81 AP(,) values for a table total of 6561 = 81 X 81 calculations. This table
shows the best design to have SUd = Sld (Ihis is the "min" part of "minimax'9. This table places the
best design near S2U = sad = 8 dB, Consequently, we have demonstrated the first statement (1), that
the best design lies along the diagonal S2 = SI.

Statement (2), which claims that the worst performance occurs for signals of s£ = Si or when one
signal is a maximum and the other is a minimum) is shown in Table 3. Each entry in Table 3 gives the
location of sI and 82 which corresponds to the worst AP(W, where APWe) is computed for all values of
the actual signals sj and s£. The entries in this table are of the form (mn) where m and n = signal
value (I = -16 dB, 2 = -12 dB,..,, 9 = +16 dB) and m 4* S[. For example, the design of

8
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Table 2 - Worst APr (E) for Each Design Pair
SI (dB)

-16 -12 -8 -4 0 4 8 12 16

-16 0.4888 0.4793 0.4487 0.4058 0.3470 0.2968 0.2712 0.2843 0.4123
-12 0.4820 0.4802 0.4583 0.4138 0.3565 0.2888 0.2165 0.2262 0.3443
-8 0.4520 0.4613 0.4517 0.4152 0.3597 0.2925 0.2200 0.1865 0.3130
-4 0.4042 0.4165 0.4143 0.3940 0.3393 0.2762 0.2052 0.1918 0.3167

$ 0 0.3505 0.3565 0.3610 0.3445 0.3017 0.2465 0.1820 0.1957 0.3182
c 4 0.3085 0.2913 0.2920 0.2802 0.2448 0.1963 0.1625 0.1903 0.3110

8 0.2820 0.2242 0.2240 0.2127 0.1837 0.1565 0.1490 0.1772 0.2933
12 0.2887 0.2275 1.1855 0.1872 0.1837 0.1745 0.1672 0.1988 0.2953
16 0.4038 0.3372 0.3030 0.3068 0.3042 0.2978 0.2888 0.2890 0.3958

Table 3 - Location of Worst APl, () Actual
Levels for "Assumed-Known Signal" Detector

Si (dB)

-16 -12 -8 -4 0 4 8 12 16

-16 9,9 9,9 9,9 9,9 9,9 9,8 9,8 5,7 7,8
-12 19,9 9,9 5,7 7,7
-8 5,9 7,9
-4 i 15,9 7,5
_ 9)Y,9 9,9 9,9 5,9 7,9

e1 4 8,9 Jr J f 9,9 1,9 5,9 7,9
8 8,9 9,9 9,9 9,9 9,9 9,1 1,9 5,9 7,9

12 7,6 7,6 9,6 9,6 9,6 9,5 9,1 6,6 7,6
16 8,7 7,7 9,7 9,7 9,7 9,6 9,6 6,7 8,7

S2d = S1d = 12 dB (located near.the lower right-hand corner of Table 3) has the actual signals giving
the largest AP(d) of (6,6) or s$ = S2 = 4 dB. Two points can be made. Since the best signal design is
S2d = Sid, we need consider only what happens there. Two actual signal locations occur on the main
diagonal at (max, max) or at (min, max). Both depend on the signal levels used in the computer run.
Observe that, except for the design at (8 dB, 8 dBl) where the actual signals are minimax, all other
designs along the main diagonal have actual signals of near equal strength (s2 = sl). This observation
on Table 3 verifies statement 2.

Statement (3) is considered in three parts: (a) determine the maximum AP(E) over all possible
actual signals 52 = s, for each design signal 5

2d = Sh4 (i) determine the maximum AP(e0 for all actual
signals (sI mimi $2maX) or (SInmax, S2mid) for all design signals S2d - Sid; and (c) determine maximum
APWe) from (a) and (b).

Working on part (a) first, Fig. 4 shows AP(e) vs S2d = 5 1d for various values of sz = sj. Figure
4 indicates that for any signal design, AP(E) is nearly the same for all large actual signals. Further-
more, AP(E) is a maximum at large actual signal values for small designs (left side of curve), and
AP(e) is a maximum at small actual signal designs when the design signals are large. The envelope of
the curves defined by the crosshatched area form the curve of maximum APGe) vS signal design
5

2d = SId. Of course, the minimax solution is to choose the signal design associated with the minimum
of this envelope curve that occurs at Sd2 = 9dl 9 dB, if only part (a) is considered.

9
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Fig. 4 - AP(s) vs design signal for s2 -1
actual signals values. 'assumed known-signal"
design

Part (1) of statement (3), where the 'assumed known signal' detector is used with s2d = s1d and
the actual signals take their minimum and maximum values, is analyzed by computing AP(e) for
smin b 1 and s,, W 00. The reference "known-signal" decision rule leads to deciding H2 whenever a

large signal is present and H0 otherwise. Thus, P(e t signal) = - ( + I + 0) = I . Figure 5 is a plot

of this condition. P(NO has little variation about a value of -

2

1.0

0.6 f-

0.4 -

0.2

nll
-16 -8 0

5 2d- SI 1 (dOa

8 16

Fig, 5 - APIe} vs design signal for
min/max actual signal values, "assumed
knawn-ztina(" deawn

10

0.1F

S1-O (not h del

I S2-W

- S,=-16 dB 0
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Finally, part (c) of statement (3) combines the results of the maximum error APWe) vs signal
design found in parts (a) and (b). The combined curves from (a) and (b) are shown in Fig. 6. The
best signal design is the design where the curve of the maximum values of AP(e) is a minimum. The
best "assumed known-signal" design occurs for 5

2d = sad equal to 5 dB.

1,0

0.8$-

0.6 F S:2 SI = 24 or 32 08

0.4 1 N_

rMINIMUM, 52 - MAXIMUM

(LIMIT) /
hI 1BEST A

IIt
.. .. .4

.-- / -i

I/

Fig. 6 - AP(E) vs design signal for best S2

= s, and min/max actual signal values-
"assumed known-signal" design

-8 o a i6
5 2d- 5

1,d (dB)

UNiFORMLY DIISTRIBULED SIGNAL iDECISION RULE

Another approach to treating the unknown parameter problem is to assign a probability density
function to these parameters and then to compute the error performance. We first develop the test for
an arbitrary density function, then specialize to the uniform density case.

%11 H(l7tH,) = pdf of the received 7, conditioned on the random
parameter i taking the value 7 and Hn being true,

p,-() = pdf of t,

Pi", (ArIH ) = J r (7ts )pn{fl Y.
aljs~'

The decision rule for minimum error probability becomes (for equal P(HE)):

max I% H7IM)J-) choose H,.

s, and s, are taken to be independent random quantities: p(s,,s,) = p,*(sjpxs2 ,). Assume

sI and 52 are uniformly distributed between S, and so:

I(S,- SI) , SI C S < SC
Ps (s) = 10 , elsewhere

F2 + r2
1,) 1P 1 +2

2~~~~~~~~~~~~~
Pri m 0~ ( r I m 'In) = _e2 wQ

P717,H1 4- ln (- S)2 + (2 -S2)2

PFY!5rS2 (r I 7 H2) = 2 e ~ 2
2 27r~~~1

ANdI

0.2 I-

I
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The indicated integration can be performed by evaluating two types of integrals.

S I

1: -J xi!) \ e 2 -ds = _ e 2

2 2 ds

The conditional pdfs are th2en:

12fr

1 1 1 -- 2

z~ ~ I e 2 1P(s#-rl) P¼s1 -rl

2 (2 g.) (2 dS { -

and

2(71H,) .i,, . I F P(s,,-r9) - P(S,-r,)l{P(s"-r1) - s-r) 

Define

W(r)- =jo e 2 4Pts,-r) - Psrl

Wl = W(rl S

and

wz= w tr2).

Note that W1 and 12 are likelihood ratios of H1 and Hd2 respectvely. The pfs become:

(201/z

e conditiona =pfe 2 are t

{rX)= 1 e2 { l 2 n

-- i222

jftB2) = e 2 {w1 w2f .

12
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The tests are expressed in terms of WI and W2 by

Ho HI H2
I II

max [1, 1/2( W 1+ W2 ), W +W 21 -'choose l .

This is of the same form as for the known-signal case where ( W§), replaces (R1. Consequently, the
decision boundaries are already known and are shown in Fig. 7. Thus, if no unknown parameters are
present and the signal and/or noise are independent of each other, the decision boundaries can be writ-
ten as in Fig. 7 where the axes are labeled likelihood ratio," Fig. 7 holds for all likelihood ratios.

W2 4 Fig. 7 - 'Uniformly distributed signals"
decision regions

0 2 4 6

Wi

The signal location considered is a square region, centered at the origin of the signal space. It is
defined by sL = -s, where sL = lower limit and su = upper limit of signals as shown in Fig. 8. The
performance measure AP(E) is computed, and the value and location of AP(E)MA are given in Table
4. From Table 4, the best design occurs around su 14 dB. The maximum values of the actual
signals shown in Table 4 are plotted in Fig. 9 for each design su near the solution, and the true
minimax solution is Stu = 13 dB. This information is shown graphically to allow interpolation in finding
the minimax solution. Table 5 shows AP(e) vs all actual signals for the best design sv = 13 dB.

/e
-su

Fig. S - Uniformly distributed signal region

V/2

K/
Su

-5u / 

Si

sL = -Si

13

SU /
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Table 4 - Value and Location of Largest AP (e) -
"Uniformly Distributed" Detector

SU A j' ) Location of target

8 0.367 Maximum/maximum

10 0.240 Maximum/maximum

12 0.175 Maximum/maximum

14 0.165 Maximum/mnimum

16 0.173 Maximumninterior

18 O. 1 R; Mnxihimimfintarinvr

20 0.183 lnterior/interior

22 0.183 Interior/intrior

S.O 

0.8

0.6

0.4

0.2

o L-
-S 0 8 16 24

DESIGN SD (d8i

Fig. 9 - Determining best "uniformly distributed
signais' design
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Table 5 - APl e) for "Uniformly Distributed Signals" Detector
(at best: Su = -SL = 13 dBl)

-16 -14 -12

0.0292 0.0357 0.0440 1
D.0358 0.0362 0.0435
0.0430 0.0483 0.0445 I

9.0497 0.0552 0.0588 1

0.0585 0.0622 0.0673 I

0.0655 0.0728 0.0767 I

0.0813 0.0848 0.0848 1

0.0933 0.0927 0.0977
0.1057 0.1107 0.1137
0.1188 0.1182 0.1197
0.1290 0A1292 0Ai30t
0.1308 0.1310 0.1278
0.1308 0.1270 0.1250 
0.1247 0.1240 0.1240
0,1308 0.1295 0.1282
0.1372 0.1355 0.1348
0,1417 0.1393 0.1393

-10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16

0.0472
0.0530
0.0547
0.0578
0.0727
0.0802
0.0938
0.1072
0. 1165
0MM180
0.1322
0. 1250
0,1230
0.1207
0. 1258
0. 1325
0.1368

0.0603
0.0550
0.0645
0.0663
0.0768
0.08 10
0.1005
0.1132
0 1163
01,290

0.1303
01195
0. 1202
0.1243
0. 1283
0. 1322

0.0672
0.0705
0.0732
0.0802
0.0873
0.0890
0. 1t13
0,1178
0.1240
0. 1282
O.130 
0. 1263
0.1177
0.1152
0. 1207
0.1238
0.1277

0.0807
0.0800
0.0828
0.0883
0,0962
0. 1015

0.1185
0,1280
0. 1333
0. 1372
0.1250
0.1165
0.1108
0.1135
0.1148
0.1188

0.0927
0.0918
0.0958
0.1027
0. 108S
0. 1060
0.1172
0,1328
0,1380
0.1420
0. 1430
0. 1292
0.1150
0.1092
0.1107
0.1172
0.1210

0.1117
0.1113
0.1135
0.1107
0,1128
0.1173
0., 1322
0. 1417
0. 1457
0.1512

0,1360
0.1122
0 1032
0, 1112
0.1172
0. 1217

0,1222
0.1207
0.1227
0. 1212
0.1220
0. 1295
0.136%
0.1443
0.1482
0.1532
0. 1465
0.1293
0.1058
0.0970
0.1035
0.1110
0.1153

0.1305
0.1287
0.1277
0. 1282
0.1227
0.1298
0.1375
0.14i7
0. 1432
0.1380
0. 1257
0.1082
0.0848
0.0803
0.0855
0.0913
0.0962

0, 1383
0,1377
0.1352
0.1352
0.1345
0.1308
0.1330
0.1340
0.1368
0.1340
0.1173
0. 1013
0.0805
0.0720
0.0838
0.0925
0.0963

01288
0. 1253
0.1237
0. 1237
0.1213
0.1172
0.1212
0.1277
0. 1220
0.1148
O.lO!S
0.0840
0.0670
0.0608
0.0735
0.0842
0.0892

0.1307
0. 1275
0.,1273
0. 1215
0.1192
0.1180
0.1140
0.1160
0.1107
0.1070
0.0895
0.0822
0.0610
0.0637
0.0787
0.0897
0.0953

0.1338
0.1323
0.1297
0. 1220
0.1215
0.1173
0.1173
0.1185
0.1163
0,1057
0,0930
0,0853
0.0680
0.0748
0.0910
0.1035
0.1098

0.1415
0.1380
0.1362
0.1305
0,1280
0. 1220
0. 1222
0,1238
0. 1233
0.1132
0. 1O01
0.0938
0.0783
0.0872
0.1040
0.1165
0. 1230

0. 1453
0.1417
0.1402
0. 1338
0.1310
0.1268
0.1260
0.1270
0.1262
0.1160
0n 1043
0,0975
0.0830
0.0925
0.1090
0. 12 17
0.1285

-16
-14
-12
-10
-8
-6
-4
-2
0
2

f A 4
6
8

10
12
14
16
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SEQUENTIALLY APPLIED NEYMAN-PEARSON DECISION RULES

The tack of knowledge about the signal levels s1 and s2 suggest formulating a test that does not
use these signal levels. The Neyman-Pearson test comes close to meeting this condition. This test sets
the threshold when the signal is absent so that a given probability of false alarm (Pf0 ) occurs. The
probability of missed detection is computed from knowing this threshold and the signal-to-noise ratio.

Three hypotheses, Ho, Hi, and H2 are present in this problem while the standard Neyman-
Pearson technique applies to a binary problem. To apply the Neymran-Pearson technique, the problem
is expressed as a series of binary tests and the Neyman-Pearson technique is applied to each one in
sequence. The Neyman-Pearson technique's parameter Pf, sets a threshold for a single signal. The
symmetry of the problem leads to applying the same Pf0 for both s, and s2. Then, both rt and r2 are
tested to see if either s1 or S2 are present by comparing rl and rz to this threshold. If both do not cToss
the threshold, then H0 is declared and the test is stopped. An additional pair of tests is made when Ho
is not declared. The number of signals declared present determines which En is chosen.

The threshold for the test uses the noise-only hypothesis; thus pdf can be written

p(n) = I e-11Zn2

1/2P}fa = f 1 e1-2n.2
T(2 7)1I2e

Figure 10 shows To vs P10 for Gaussian noise, and Fig. 11 shows the decision regions. The
comnbninedl test applied too thte received zina is tkhpen:

If: }rt I < To, and gr I < To

Then: declare Ho
Else:

If: Irf > T, and rfl > To
Then: declare H2
Else: declare HI

End.
la-2

10~-3 X2 f=; ; -Xdc 10-4 _-I2~~~~~~~~2d

Fig. 10- Threshotd t r

a-
aT 1O(-6 ~_

-7
4 6 8

ACTUAL SIGNALS 162= 1M 1dB)
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H _--- r1 Fig. it - Neyman-Pearson decision region

Figure 12 is a plot of P(e) vs signal level (s2 = S,) for various Pf' a The error probability
approaches a limit slightly less than Pf, as the signal strength increases. Since the "known signal"
detector has Pfa 0 0 for large signals, a design using small Pf1a seems desirable. Figure 12 shows that
the small signal performance is poor for small Pf, designs and large signal performance is poor for large
Pf 0, designs. A compromise must be made to obtain good performance at all signal levels.

Fig. 12 - Error probabilities ror Neymain-Pearson
case, uncorrelated noise

PMk

0

SIGNAL LEVEL idBI

17

H,

~~H,

H2

-I

H2
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A particular design value for the probability of false alarm is determined by using a minimax Cri-
teria. In this case, the worst differential error AP(E) over all actual signals is plotted vs Pf0 (Fig. 13).
The best design for Pf1 is Pf1 = 0.08, because the worst &P(e) is a minimum at this point. The actual
signal levels that yield the worst &P(t) are noted on the figure. The solid line indicates the worst
AP(k) is occurring Where S2 = Ns for these various Pf0 . The dotted line indicates the worst APG(f)
occurs for S2 7 s-.

.80 _

.80 t

API1)

.40

.20

0.0001 0.00! .01 0.10

Fig. 13 - A? ( error) vs Pf,-Neyman-Pearson
uncorrelated noise

1.00

The remainder of this report investigates the effect of noise correlation on the performance of
some Neyman-Pearson detectors.

CORRELATED NOISE

Decision making in correlated noise is made by generalizing the Neymnan-Pearson work. The
hypothesis of no signals being present, H1, is tested by decorrelating the jointly Gaussian noise and
applying a Neyman-Pearson Pf, test to both rj and r2. Jointly Gaussian random variables can be made
independent of each other by applying the proper linear transformation. The parameter 0 in the
transformation is selected so that the transformed random variables are independent of each other.

The pdf of the noise (for a2 = ac= 1) is:

nl -2pnjn2 4-4

p(nln 2) - -- e 2(1-p)

The transformation used is:

ml = n 1 cos B + nz sin 9

A-2 = nI sin 9n L 2 Cos O.

The noise is decorrelated by 9 - 2 tan- 2 inlcr2

In this case, 2 = cT so that 9 = - and sin o = cos 6 = 1iJ- . The uncorrelated Gaussian density of
4

the new variables is given by

1 ti2 22 

where or 2= +p and cr2 =I-P
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The ml and M2 thresholds are obtained by causing the threshold To to apply to meet the design
parameter Pf0 with v = 1 and then adjusting this threshold for oa • 1:

jPi = J" e 12n 2 dn

For nonunity standard deviation x = n lr,
If f- r 0 21 e /0,"2 dx

TP, = ETD) (2w) 11/2C

Tl= Ao ITo = viilrT, and

T2 = O -o .-pro

The test for Ho is

If: Wrsn I 1 and ;| < cT
Then: declare Ho,
Else: test for Hi or H2,
End.

where it and i? are the transformed received signals r4 and r4.

If if0 is declared true, then the test is completed; if Ho is not declared, the test for H, and H2 is
conducted by using two additional tests. The first test is to determine if sl is present conditioned on s2
being present, and the second tests for 52 given sj. To conduct these tests, two methods are investi-
gated. The first test is the same as the test used for uncorrelated noise, and the second is new. The
first method ignores correlation in all tests made; its development has already been discussed. The
second method conducts tests based on conditional densities. The densities are conditioned on one sig-
nal being zero and the other being an estimate. The estimate is "most likely."

The results are obtained by using the Neyman-Pearson method developed in the previous section
for Pf0 = 0.0001, 0.001, 0.01, 0.1, and 0.25, and for noise correlation coefficient p = 0.99. The other
two methods considered are similarly plotted. The following points can be made from Fig. 14.

* The performance of small signals approaches the classical result of P(E) = 2/3, which is reason-
able since no procedure can do better for zero-strength signals.

* As the signal increases, the performance breaks away from the classical result. Consider, for
example, the signal levels encountered for P(E) = 0.6 (90% of the classical value). The signal at
P10 = 0.0001 has to be 15 dB stronger than the Pf0 = 0.25 value. The 15 dB signal difference
decreases to 7 dB when P(f) = 0.3 due to the greater slope of the curves at small P, values.

* Signals lying between -10 dB and +7 dB have error probabilities that are better for large P10
values.

* The large signal performance gets poorer for larger Pf1 values. For example, the pf0 - 0.25
curve never gets below 0.165. This poor performance is due to nonzero P( 6 ) for Ho and H1.

A small Pf1 design gives poor performance at moderate signals but good performance at large sig-
nals, and a large PI0 design gives poor performance at large signals but good performance at midlevel
signals; a nominal value of Pj0 = 0.1 was chosen for further analysis.

Figure 15 is a plot of P(E) vs actual signal strength (S2 = SI) for Pf0 = 0.1 and p = 0.9, 0.99,
and 0.999. These p values are both smaller and larger than the nominal p used in the curves of Fig.
14. Figure 15 shows that there is only slight difference for all values of p, the most obvious being the
strong signal performance. Here, the performance at the smaller p values is best and is -35% lower
than the 0.075 error performance at p = 0.999.
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1.0

0.9

0.8 _

:160.7 P~a0.t1

0.6~~~~~~~~~~~~~~.

0.2

40 -20 0 20 4c0
ACTUAL SiGNALS M52 m51 1 /81

Fig. 140Ignore correlation - 0.99

0.9 0

0.8 0

03 ~ ~ ~ ~ ~ ~~~~2

0.6 0:g9RE -
0.99 \l

OA -~~~~~~ 

0.3 -

0.1 V __

-40 -20 0 20 40

ACTUAL StGNALS X~ = $ i1WS)

Fig. 15 - Ignore correlation-Pc = 0.1
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Most Likely Estimate (Correlated Noise)

Conducting a Neyman-Pearson test for the presence of a signal requires estimating unknown
parameters and integrating the pdf, with this signal not present, over a region set by P10 considerations.
The second method of accounting for correlated noise estimates the unknown signal S2 in
p(rtlr 2 = r =, s, 0, S2) by maximizing the joint pdf p(rl, r2 ).

nfr r..X = a -z ~ [ - slo - 2p(rj - S(r2- s2) + (r2- 2)2]
i''2' 2 pr21 -

where r, and r2 equal their received values and si = 0. By setting

ap(rl,r2) -0,

we get S2 = 4 -pr; and

p(rl,r2)
F ~rL I ,Z) (r2)

(r _p2, *)2

1 2(-a )/

(2n7T) '12 (1l-p2) 1/2 e

= N (p 2 r, ar2 = 1 -p 2 )

For a Gaussian random variable rl, the desired threshold r, centered about the mean p2r;, is
7 = Vl-p 2 ro where ro is the threshold for p = O. The random variable (r - p 2 r;) is a Gaussian ran-
dom variable with zero mean and variance = - p2 . The rule is to declare Si absent if Ir 1-p2 4 I < T.
Since r, = r3 when the test is applied,

r41(1 -p 2 ) < r - s1 absent

Jr,'1 < T ] s, absent, else sj declared present.(1-p 2)1 /2

/1. I1II~fesLt holU EN LVI U~.LtL1III 2 ~VC VI fl~1. I %1kV U1410LIUIL III V I 1 2'ID 13 iiaui., aS aueAi si mliar tes tudis L' declaring S2 present or absent. Tal -elrto r aL r12is Aea eoe
sj and S2 present - H2 . otherwise HI.

The error performance obtained by estimating the unknown signals by maximizing the joint den-
sity function ("most likely" method) is given in Figs. 16 and 17. Figure 16 is a plot of Pi) vs actual
signal strength (S2 = Si) for p = 0.99 and values of Pf,0 from 0.0001 to 0.25. This set of curves shows
a plateau not found for the other estimation methods. The curve of PW vs S2 (=sd) decreases from
the classical limit of 2/3 to a level that depends on PRO (signal levels from 0 to 15 dB). For very weak
signals, larger values of p10 give better small signal performance. The plateau extends from signal
ValUe Vs J - 5 UD to +rs UfB LIe actUal ILImIt UCep1U VII on f . 1For srong sigalts4, LIIV errVr L -C eL

smallest for the smallest Pf1 . The large signal error performance is determined only by P(e 1i) (since
P (EIHI) and P(EIH2) = 0), and is given by

P(e) = P(Ho)P(EIHO) = [I - (i- pf1 )2

For Pf,1 = 0.25, this equation gives PN = 0.146, which agrees with the value computed. This does
not verify the accuracy of the Monte Carlo method used because the Monte Carlo method gives exact
values for P(eHIH) and P(e fH2)(= 0) that are accurate to an infinite number of places. An exact
match would not occur for smaller sianals. There is no overall better design because the P,_ values
giving the lowest P (e) changes from (starting at small signals and progressing to larger signals):

Pfamax Pfamin fPamax Pfamin
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1.0

PWt) 0.5

0.4

0.3

0.2

0.1

0

1.0

0,9

0.8

0.7

0.8

r%); 015

0.4

0.3

0.2

40 -20 0 20

ACTUAL SIGNALS IS2-Sj (dB)

Fig. 16 - 'Most likely" signal estimation, p 0.99

-40 -20 0 20
ACTUAL SIGNALS i2= 1) (dB)

Fig. 17 - 'Most likely' signal estimation, PI0 = 0.1
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Figure 17 plots P(E) vs actual signal (s2 = SI) for Pfr- = 0.1 and p = 0.9) 0,S9 and 0.999 for the
"most likely" signal estimation method. These curves show that the plateau length increases with
increasing p. The p = 0.9 case almost causes all indications of this plateau to disappear. The drop in
P(c) of the small signal side of the plateau is caused by P(frH 1 ) going from a value near one to zero,
while the drop for signals to the right of the plateau drop because the conditional error probability
P (El H2) goes from one to zero. The remaining strong signal P (e) is determined by Pbsc [I). Large p
values markedly improve the small signal performance but also markedly reduce the moderate-to-large
signal perfnrnance. For large signals, large p gives the best performance

Error performance of the two methods are compared in Fig. 18, a plot of Pbs) vs actual signal
(S2 = SI) and for p = 0.99 and P10r = 0.1. Small signal error performance is best for the "most likely"
estimation method and continues to be best until the signals reach + S dIV Then the "ignore
correlation" method does markedly better until the signals reach +25 dB and remains marginally better
for larger signals. All methods have signal ranges where they perform noticeably worse than the best,
thus no method is chosen "best." If forced to choose, the choice would be for the method that ignores
correlation. This is because it has fractionally less degradation where it is not the best compared to the
t
't~~rtt ¶;bhu..3 rnntlhnA*-iNV ssn c* 1s1OA- 

ACTUAL SIGNALS S2- S.) Id1)

Fig. 18 - Comparison-correlaied noise-p = 0.99
and Pf,, -0.1

In addition to investigating the results of applying these methods, the effect of the reference
"known signal" detector is further considered. Figure 19 is a plot of P^0) vs signal strength (S2 = sI)
for p = 0., 0.9, 0.99, 0.999, and 0.9999. As the noise becomes more correlated (p -1) the perfor-
mance gets better, primarily for smaller signals. This is because the noise becomes less uncertain. All
curves join the lower curve, thus at larger signals the performance for all p is almost the same. At very
small signals, the performance is that of the "best" a priori performance (where the received signals are
not considered in making a decision). Between these extremes, the p-dependency can be seen. In the
limit p -1, the noise voltages are equal; thus under Ho, no errors are made if the rule "Declare Ho
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Pie) 1 o=.999 N v N X 

0.4 I

0.2

ot tI as
-32 -24 -16 6

ACTUAL SIGNALS S, = S) dS)

Fig. 19 - Effects of correlation and known signals

present if and only if r2 = r1n is used. For very small signals, no noticeable difference is present
between H, and FH so an error is made half of the time, i.e., P(EdHi) + PEAH) = 1/3. Hence,
Pbs) = 1/3. The general shape of the performance curves are about the same for all p, and the curves
are shifted -1i dB for each ft9"r change in p (or for each 10 dB reduction in (1-p)).

COMPARISONS

The error probability of the "best" of each decision rule considered for the uncorrelated cases are
plotted in Fig. 20. The known signal case is a lower bound (as expected). The best "assumed known
signar design is for S2d = s3d = S dB, the 'uniformly distributed" design is best for s,, = 13 dB, and
the Neyman-Pearson design is best for Pf, = 0.08; each gives almost the minimum APh) within that
particular family of designs.

For small signals, the "best" (lowest) error performance is obtained for the "assumed known sig-
nal" detector method. The uniformly distributed Neyman-Pearson are always Worse than the "assumed
known signal" case until the signal levels are near 1i dR where (by cncidence) thiey All come nenr
each other. For larger signals, the lowest P4) design becomes the Neyman-Pearson. The "uniformly
distributed" detector is worse than the "assumed known signal" detector except for large signals. No
rule is uniformly better (2, p. 7961 than others, so choosing the best rule requires judging the advan-
tages and the disadvantages of each. My choice of those shown is the "assumed known signal" because
it is close to the "known signal" detector error probability results for small signals.

Correlated noise introduces another piece of information (correlation coefficient) into the prob-
lem. The Neyman-Pearson tests required an estimate of the (unknown) signals, not set equal to zero
as before, in the conditional pdf. The selected method is "ignore correlation."

CONCLUSIONS

The error performance in determining the number of signals present when each signal (if present)
combines linearly with Gaussian noise and with only a skngle look-per-signl\ (if available) is compared
and evaluated numerically; the one giving the lowest error probability (or close, since none were
uniformly best) is selected. The classical method estimates any needed unknown parameters and places
their estimates in the probability density functions. The hypothesis with the largest probability density
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